首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29814篇
  免费   2928篇
  国内免费   2558篇
  2024年   31篇
  2023年   553篇
  2022年   467篇
  2021年   836篇
  2020年   1224篇
  2019年   1367篇
  2018年   1194篇
  2017年   1130篇
  2016年   1297篇
  2015年   1355篇
  2014年   1720篇
  2013年   2439篇
  2012年   1445篇
  2011年   1694篇
  2010年   1181篇
  2009年   1637篇
  2008年   1675篇
  2007年   1687篇
  2006年   1532篇
  2005年   1348篇
  2004年   1153篇
  2003年   1075篇
  2002年   1033篇
  2001年   816篇
  2000年   746篇
  1999年   587篇
  1998年   567篇
  1997年   486篇
  1996年   405篇
  1995年   434篇
  1994年   336篇
  1993年   289篇
  1992年   291篇
  1991年   203篇
  1990年   220篇
  1989年   178篇
  1988年   86篇
  1987年   91篇
  1986年   75篇
  1985年   60篇
  1984年   72篇
  1983年   40篇
  1982年   56篇
  1981年   35篇
  1980年   34篇
  1979年   40篇
  1978年   20篇
  1977年   15篇
  1976年   13篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
MPV17 is an integral inner mitochondrial membrane protein, whose loss-of-function is linked to the hepatocerebral form of the mitochondrial-DNA-depletion syndrome, leading to a tissue-specific reduction of mitochondrial DNA and organ failure in infants. Several disease-causing mutations in MPV17 have been identified and earlier studies with reconstituted protein suggest that MPV17 forms a high conductivity channel in the membrane. However, the molecular and structural basis of the MPV17 functionality remain only poorly understood. In order to make MPV17 accessible to high-resolution structural studies, we here present an efficient protocol for its high-level production in E. coli and refolding into detergent micelles. Using biophysical and NMR methods, we show that refolded MPV17 in detergent micelles adopts a compact structure consisting of six membrane-embedded α-helices. Furthermore, we demonstrate that MPV17 forms oligomers in a lipid bilayer that are further stabilized by disulfide-bridges. In line with these findings, MPV17 could only be inserted into lipid nanodiscs of 8–12 nm in diameter if intrinsic cysteines were either removed by mutagenesis or blocked by chemical modification. Using this nanodisc reconstitution approach, we could show that disease-linked mutations in MPV17 abolish its oligomerization properties in the membrane. These data suggest that, induced by oxidative stress, MPV17 can alter its oligomeric state from a properly folded monomer to a disulfide-stabilized oligomeric pore which might be required for the transport of metabolic DNA precursors into the mitochondrial matrix to compensate for the damage caused by reactive oxygen species.  相似文献   
2.
3.
4.
  1. Fishing is a strong selective force and is supposed to select for earlier maturation at smaller body size. However, the extent to which fishing‐induced evolution is shaping ecosystems remains debated. This is in part because it is challenging to disentangle fishing from other selective forces (e.g., size‐structured predation and cannibalism) in complex ecosystems undergoing rapid change.
  2. Changes in maturation size from fishing and predation have previously been explored with multi‐species physiologically structured models but assumed separation of ecological and evolutionary timescales. To assess the eco‐evolutionary impact of fishing and predation at the same timescale, we developed a stochastic physiologically size‐structured food‐web model, where new phenotypes are introduced randomly through time enabling dynamic simulation of species'' relative maturation sizes under different types of selection pressures.
  3. Using the model, we carried out a fully factorial in silico experiment to assess how maturation size would change in the absence and presence of both fishing and predation (including cannibalism). We carried out ten replicate stochastic simulations exposed to all combinations of fishing and predation in a model community of nine interacting fish species ranging in their maximum sizes from 10 g to 100 kg. We visualized and statistically analyzed the results using linear models.
  4. The effects of fishing on maturation size depended on whether or not predation was enabled and differed substantially across species. Fishing consistently reduced the maturation sizes of two largest species whether or not predation was enabled and this decrease was seen even at low fishing intensities (F = 0.2 per year). In contrast, the maturation sizes of the three smallest species evolved to become smaller through time but this happened regardless of the levels of predation or fishing. For the four medium‐size species, the effect of fishing was highly variable with more species showing significant and larger fishing effects in the presence of predation.
  5. Ultimately our results suggest that the interactive effects of predation and fishing can have marked effects on species'' maturation sizes, but that, at least for the largest species, predation does not counterbalance the evolutionary effect of fishing. Our model also produced relative maturation sizes that are broadly consistent with empirical estimates for many fish species.
  相似文献   
5.
6.
Primary cell cultures were prepared from breast muscles of 11 day 4 hour-embryonic chicks. Cytoplasmic RNAs were isolated from the cultured cells at various time intervals from day 3 to day 8. A [P32] DNA probe complementary to messenger RNA of myosin heavy chain was used to hybridize with the RNAs after gel electrophoresis. A transient species of polyadenylated RNA with a decreased mobility in electrophoresis was detected during a period of time when contractions of syncytial fibers were first observed.  相似文献   
7.
Microbial diversity and distribution are topics of intensive research. In two companion papers in this issue, we describe the results of the Cariaco Microbial Observatory (Caribbean Sea, Venezuela). The Basin contains the largest body of marine anoxic water, and presents an opportunity to study protistan communities across biogeochemical gradients. In the first paper, we survey 18S ribosomal RNA (rRNA) gene sequence diversity using both Sanger- and pyrosequencing-based approaches, employing multiple PCR primers, and state-of-the-art statistical analyses to estimate microbial richness missed by the survey. Sampling the Basin at three stations, in two seasons, and at four depths with distinct biogeochemical regimes, we obtained the largest, and arguably the least biased collection of over 6000 nearly full-length protistan rRNA gene sequences from a given oceanographic regime to date, and over 80 000 pyrosequencing tags. These represent all major and many minor protistan taxa, at frequencies globally similar between the two sequence collections. This large data set provided, via the recently developed parametric modeling, the first statistically sound prediction of the total size of protistan richness in a large and varied environment, such as the Cariaco Basin: over 36 000 species, defined as almost full-length 18S rRNA gene sequence clusters sharing over 99% sequence homology. This richness is a small fraction of the grand total of known protists (over 100 000–500 000 species), suggesting a degree of protistan endemism.  相似文献   
8.
  1. Assemblages of insect herbivores are structured by plant traits such as nutrient content, secondary metabolites, physical traits, and phenology. Many of these traits are phylogenetically conserved, implying a decrease in trait similarity with increasing phylogenetic distance of the host plant taxa. Thus, a metric of phylogenetic distances and relationships can be considered a proxy for phylogenetically conserved plant traits and used to predict variation in herbivorous insect assemblages among co‐occurring plant species.
  2. Using a Holarctic dataset of exposed‐feeding and shelter‐building caterpillars, we aimed at showing how phylogenetic relationships among host plants explain compositional changes and characteristics of herbivore assemblages.
  3. Our plant–caterpillar network data derived from plot‐based samplings at three different continents included >28,000 individual caterpillar–plant interactions. We tested whether increasing phylogenetic distance of the host plants leads to a decrease in caterpillar assemblage overlap. We further investigated to what degree phylogenetic isolation of a host tree species within the local community explains abundance, density, richness, and mean specialization of its associated caterpillar assemblage.
  4. The overlap of caterpillar assemblages decreased with increasing phylogenetic distance among the host tree species. Phylogenetic isolation of a host plant within the local plant community was correlated with lower richness and mean specialization of the associated caterpillar assemblages. Phylogenetic isolation had no effect on caterpillar abundance or density. The effects of plant phylogeny were consistent across exposed‐feeding and shelter‐building caterpillars.
  5. Our study reveals that distance metrics obtained from host plant phylogeny are useful predictors to explain compositional turnover among hosts and host‐specific variations in richness and mean specialization of associated insect herbivore assemblages in temperate broadleaf forests. As phylogenetic information of plant communities is becoming increasingly available, further large‐scale studies are needed to investigate to what degree plant phylogeny structures herbivore assemblages in other biomes and ecosystems.
  相似文献   
9.
10.
Tissue culture techniques for the propagation and conservation of endemic or threatened plants can be used to complement the methods usually applied in ex situ conservation. Thus, Minuartia valentina (Caryophyllaceae), an endangered plant species endemic to the Valencia Community (Eastern Spain), was successfully regenerated through shoot proliferation from wild plants growing in their natural area. Nodal segments, 10~mm long, were cut from rametes of adult material, sterilised and established in vitro. Equally successful shoot multiplication was achieved on Murashige and Skoog (MS) medium with 80 mg l-1 phloroglucinol in combination with either 1 mg l-1 6-benzylaminopurine or 1 mg l-1 kinetin. Excised shoots were rooted in MS medium supplemented with an auxin (indole acetic acid, indole-3-butyric acid, or napththalene acetic acid). Shoots rooted well (96–100%) within three weeks in all auxin treatments. However, the use of napththalene acetic acid was discarded because this auxin delayed root differentiation, and induced adventitious root malformation. Rooted plantlets were transferred to pots and 85% of them acclimatized successfully four weeks after transfer to greenhouse conditions, where they exhibited normal morphology and growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号